Getting data into R with data.frames and spreadsheets

Author

Jeremy Van Cleve

Published

September 17, 2024

Outline for today

  • Another slice of slicing
  • Names and attributes
  • Factors
  • Data frames: a special kind of list
  • Reading data tables

Another slice of slicing

Last time, we covered much of the basics of slicing matrices but there are still some topics and some helper functions that will be useful to know when trying to accomplish certain tasks.

Assigning to a slice

Not only can you extract a slice of a matrix to analyze or plot but you can also assign values to that slice. First, create a matrix of all zeros to manipulate:

allz = matrix(0, nrow = 6, ncol = 6)
allz
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,]    0    0    0    0    0    0
[2,]    0    0    0    0    0    0
[3,]    0    0    0    0    0    0
[4,]    0    0    0    0    0    0
[5,]    0    0    0    0    0    0
[6,]    0    0    0    0    0    0

As before, you slice the first row.

allz[1,]
[1] 0 0 0 0 0 0

However, you can also assign values to it.

allz[1,] = 1:6
allz
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,]    1    2    3    4    5    6
[2,]    0    0    0    0    0    0
[3,]    0    0    0    0    0    0
[4,]    0    0    0    0    0    0
[5,]    0    0    0    0    0    0
[6,]    0    0    0    0    0    0

Note that when assigning to a slice, the right-hand side must be of the same dimensionality as the left-hand side. For example, the following will not work:

allz[1,] = 1:4

The one exception to this rule is when the number of items on the right hand side is a multiple of the number of elements in the slice. The simplest example is

allz[1,] = 1
allz
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,]    1    1    1    1    1    1
[2,]    0    0    0    0    0    0
[3,]    0    0    0    0    0    0
[4,]    0    0    0    0    0    0
[5,]    0    0    0    0    0    0
[6,]    0    0    0    0    0    0

but you can also do

allz[1,] = 1:3
allz
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,]    1    2    3    1    2    3
[2,]    0    0    0    0    0    0
[3,]    0    0    0    0    0    0
[4,]    0    0    0    0    0    0
[5,]    0    0    0    0    0    0
[6,]    0    0    0    0    0    0

where the right hand side is use as many times as necessary to fill the slice.

Sorting

Sorting numeric and character values is an important task that comes up in many applications. The sort function has reasonable defaults where it produces increasing numeric values

set.seed(100)
rvec = sample(1:100, 20, replace = TRUE)
rvec
 [1] 74 89 78 23 86 70  4 55 70 98  7  7 55 43 82 61 12 99 51 72
sort(rvec)
 [1]  4  7  7 12 23 43 51 55 55 61 70 70 72 74 78 82 86 89 98 99

or character values

svec = c("hello", "world", "goodbye", "grand", "planet")
sort(svec, decreasing=TRUE)
[1] "world"   "planet"  "hello"   "grand"   "goodbye"

You can reverse the sort order by setting the argument decreasing = TRUE.

Getting the indices from slices

Sorting

Often, you will want to sort not only a vector by the rows of a data matrix based on some column of the matrix. Thus, you need the list of positions each row will go to (e.g., row 1 to row 10 because its 10th in the sorted order, etc). To obtain this, you can use the order function

svec
[1] "hello"   "world"   "goodbye" "grand"   "planet" 
order(svec)
[1] 3 4 1 5 2

which output precisely that list of indices. If you stick these indices back into the vector, you will obtain the original sort operation

svec[ order(svec) ]
[1] "goodbye" "grand"   "hello"   "planet"  "world"  
sort(svec)
[1] "goodbye" "grand"   "hello"   "planet"  "world"  

You can also use the “sort order” of one column to order the rows of a whole matrix or data table. For example, using a matrix of random values,

set.seed(42)
rmatx = matrix(sample(1:20, 36, replace = TRUE), nrow = 6, ncol = 6)
rmatx
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,]   17   17   20    5    3    4
[2,]    5   15   18   13    1    4
[3,]    1    7   15    5   10   18
[4,]   10    4    3   20   11   13
[5,]    4    5    9    2   15    5
[6,]   18   14    4    8    8    4

you could then sort the rows based on elements in the first column by first obtaining the indices used to sort that column

order(rmatx[,1])
[1] 3 5 2 4 1 6

and using the indices to order the rows

rmatx
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,]   17   17   20    5    3    4
[2,]    5   15   18   13    1    4
[3,]    1    7   15    5   10   18
[4,]   10    4    3   20   11   13
[5,]    4    5    9    2   15    5
[6,]   18   14    4    8    8    4
rmatx[ order(rmatx[,1]), ]
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,]    1    7   15    5   10   18
[2,]    4    5    9    2   15    5
[3,]    5   15   18   13    1    4
[4,]   10    4    3   20   11   13
[5,]   17   17   20    5    3    4
[6,]   18   14    4    8    8    4

Boolean (logical) slicing

Recall that you can slice by creating a logical condition (generating TRUE and FALSE values) and use that in the index of a matrix. Sometimes, you want the actual indices of the elements of that matrix that are sliced; i.e., you want the indices of the elements where the conditions is TRUE. To get these indices, you use the which function. For example, the logical vector and slice are

rmatx[,1] > 10
[1]  TRUE FALSE FALSE FALSE FALSE  TRUE
rmatx[ rmatx[,1] > 10, ]
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,]   17   17   20    5    3    4
[2,]   18   14    4    8    8    4

You can slice the same way with which:

which( rmatx[,1] > 10 )
[1] 1 6
rmatx[ which( rmatx[,1] > 10 ), ]
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,]   17   17   20    5    3    4
[2,]   18   14    4    8    8    4

Finally, there some special versions of the which function that give you the first index of the max or min element of a vector, which.max and which.min.

Names and attributes

We’ve talked about attributes and names before but there are some helpful functions for getting and setting the names associated with arrays and lists. You have already seen with lists how each element can be given a name.

l = list(a = 1, b = "one hundred")
named_svec = c(s1 = "hello", s2 = "world", s3 = "goodbye", s4 = "grand", s5 = "planet")
named_svec
       s1        s2        s3        s4        s5 
  "hello"   "world" "goodbye"   "grand"  "planet" 
str(named_svec)
 Named chr [1:5] "hello" "world" "goodbye" "grand" "planet"
 - attr(*, "names")= chr [1:5] "s1" "s2" "s3" "s4" ...

You can recover those names with the names function:

names(named_svec)
[1] "s1" "s2" "s3" "s4" "s5"

You can also set the names afterwards by assigning to names:

svec
[1] "hello"   "world"   "goodbye" "grand"   "planet" 
names(svec) = c("s1", "s2", "s3", "s4", "s5")
svec
       s1        s2        s3        s4        s5 
  "hello"   "world" "goodbye"   "grand"  "planet" 

Finally, you can return a version of the vector with the names stripped using the function uname

unnamed_svec = unname(named_svec)
unnamed_svec
[1] "hello"   "world"   "goodbye" "grand"   "planet" 

though note that this hasn’t changed the original vector:

named_svec
       s1        s2        s3        s4        s5 
  "hello"   "world" "goodbye"   "grand"  "planet" 

Finally, you can get rid of the names entirely by assigning names to NULL

names(named_svec) = NULL
named_svec
[1] "hello"   "world"   "goodbye" "grand"   "planet" 

Just as reminder, while we can name elements of vectors, they still have to hold the same data type, unlike lists that can hold anything.

str(list(a=1, b="two"))
List of 2
 $ a: num 1
 $ b: chr "two"
str(c(a=1, b="two"))
 Named chr [1:2] "1" "two"
 - attr(*, "names")= chr [1:2] "a" "b"

Factors

A special object that you will see when dealing with data frames is called a “factor”. A factor is a vector that can contain only predefined values and essentially stores categorical data (e.g., “tall”, “medium”, and “short” for plant height). Factors have a “levels” attribute that lists the allowable values. For example

fac_factor = factor(c("Famulski", "Burger", "Seifert", "Santollo", "Duncan", "Singh"))
fac_factor
[1] Famulski Burger   Seifert  Santollo Duncan   Singh   
Levels: Burger Duncan Famulski Santollo Seifert Singh

You can get the levels of a factor with

levels(fac_factor)
[1] "Burger"   "Duncan"   "Famulski" "Santollo" "Seifert"  "Singh"   

If you try to set an element of the factor object to a value outside of levels, you will receive a warning

fac_factor[1] = "Van Cleve"
Warning in `[<-.factor`(`*tmp*`, 1, value = "Van Cleve"): invalid factor level,
NA generated
fac_factor
[1] <NA>     Burger   Seifert  Santollo Duncan   Singh   
Levels: Burger Duncan Famulski Santollo Seifert Singh

and the element will be converted to the NA value, which is used for missing data.

Many R functions that read data tables take advantage of this behavior of factors so that columns may only contain certain values and the other values are missing data. This occurs when the function runs into a column with string data and the R function will often convert that column to a factor. Some of the functions that read data tables have nice arguments that let you tell them that specific strings, say “-”, represent missing data and should be be converted to NA.

While useful, factors are extremely annoying when your data are converted to them when you don’t expect it as further changes to the data table may result in NA values when you really wanted to add a new string value. This paper gives a good history of why factors are useful in R. It mostly comes down to factors being useful for categorical variables in regression models.

The main place factors are used that we’ll encounter in this course is when plotting categorical variables. In those cases, the order the variables are plotted in will be determined the order of the levels in levels. In those cases, you may want to reorder the factors so that the variables are plotted in a specific order (say in descending order of frequency in the data). For this, there is a nice package called forcats that is included in the tidyverse that has the function fct_reorder that can help. Another thing we’ll run into is changing factor levels so that they have more descriptive labels. For this forcats has fct_recode. We’ll see examples of these kinds of scenarios later on when we’re plotting using ggplot2

Data frames

Finally we have reached data frames. Data frames are the most common way of storing data in R. Essentially, a data frame is a list object containing vectors of equal length (i.e., the number of rows of the table). Put another way, a data frame is a list version of a matrix. Thus, data frames have properties such as length(), rnow(), ncol() colnames(), and rownames().

Creating a data frame is like creating a list where you name your elements, which here are columns (data not guaranteed to be accurate…):

dframe = data.frame(height_rank = 1:4, last_name = c("Van Cleve", "Linnen", "Seifert", "Pendergast"), first_name = c("Jeremy", "Catherine", "Ashley", "Julie"))
dframe
  height_rank  last_name first_name
1           1  Van Cleve     Jeremy
2           2     Linnen  Catherine
3           3    Seifert     Ashley
4           4 Pendergast      Julie

Slicing a data frame works like slicing a matrix or a list. Often, we will use the list convention where columns can be obtained with $. For example,

dframe$first_name
[1] "Jeremy"    "Catherine" "Ashley"    "Julie"    
dframe$last_name
[1] "Van Cleve"  "Linnen"     "Seifert"    "Pendergast"

Adding columns to a data frame is done with cbind (“column bind”), which glues together columns,

cbind(dframe, building = c("THM", "THM", "THM", "THM"), floor = c(2,2,2,3))
  height_rank  last_name first_name building floor
1           1  Van Cleve     Jeremy      THM     2
2           2     Linnen  Catherine      THM     2
3           3    Seifert     Ashley      THM     2
4           4 Pendergast      Julie      THM     3

and adding rows with rbind (“row bind”), which glues together rows,

rbind(dframe, data.frame(height_rank = 0, last_name = "Smith", first_name = "Jeramiah"))
  height_rank  last_name first_name
1           1  Van Cleve     Jeremy
2           2     Linnen  Catherine
3           3    Seifert     Ashley
4           4 Pendergast      Julie
5           0      Smith   Jeramiah

Again, note that each of these commands returned a new data.frame and the original is unchanged until we explicitly save back to that variable name:

dframe
  height_rank  last_name first_name
1           1  Van Cleve     Jeremy
2           2     Linnen  Catherine
3           3    Seifert     Ashley
4           4 Pendergast      Julie

Functions like cbind, rbind, and others that do operations on arrays and data frames usually create a copy of the data and return the modified copy. This is usually what you want since you’re not modifying your original variable/data until you explicitly assign the old variable to the new data. One case where you might not want to do this is when your data are so big (e.g., whole genomes, billions of tweets) that they take up a large fraction of the computer’s RAM, in which case you have to be very careful about creating copies of your data.

Reading data tables

Now that you know about data frames, you can start using some nice R functions to read in data. We have already seen this when loading data for the homeworks. As in those examples, we load the a few packages before loading the data since they are nice for reading csv and excel files. For reading excel files, you’ll need to install the readxl package if you don’t have it, which you can do with:

install.packages("readxl")

Then load:

library(tidyverse) # loads the `readr` package that loads things like csv files
library(readxl) # package for reading Excel files

Now, you can use the read_csv function to load csv or “comma separated value” files. For example to load COVID-19 and respiratory virus data from the CDC that was saved as a csv file, we load us_hosps_deaths_cdc_2020-01_2024-09.csv, which is in the project folder and course GitHub repo.

us_deaths = read_csv("us_hosps_deaths_cdc_2020-01_2024-09.csv")
Rows: 11128 Columns: 72
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr   (2): state, state_abbrv
dbl  (69): covid_19_deaths, total_deaths, percent_of_expected_deaths, pneumo...
dttm  (1): week_end_date

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Notice that read_csv gives you some nice output telling us about the table you just read. This function and others like it (i.e., from the readr and readxl packages) do a lot for you automatically and have many nice features. For example, read_csv has the argument col_names = TRUE by default, which means it uses the first row of the table as the column names. Some tables may simple just straight into data without column names in which case you can set col_names = FALSE and it will give automatic names or give col_names a vector of column names manually. Sometimes data tables will have the first few lines with text describing the data and you can skip them by giving the argument skip the number of lines to skip. There are many other options so looking at the help with ?read_csv is recommended when you’re having trouble getting the data loaded correctly.

Loading excel files in no harder. We’ll load some data from a RNA-seq paper on genomic imprinting (Babak et al. 2015. Nat Gen, http://dx.doi.org/10.1038/ng.3274), babak-etal-2015_imprinted-mouse.xlsx (located in project folder and course GitHub repo), with read_excel

imprint = read_excel("babak-etal-2015_imprinted-mouse.xlsx", na = "NaN")

Note that you have to tell the function what strings in the Excel spreadsheet correspond to NA or missing data (“NaN” in this case). The first column are the gene names for each row

imprint$Genes
  [1] "PEC3"              "UBE2NL"            "TRAPPC9"          
  [4] "EIF2C2"            "MIR344D-3"         "MIR344G"          
  [7] "A930009L07RIK"     "KCNK9"             "RASGRF1"          
 [10] "INPP5F"            "NAP1L5"            "USP29"            
 [13] "HERC3-new"         "GM9801-new"        "BEGAIN"           
 [16] "PX00010K13"        "PEG13"             "1110006E14RIK"    
 [19] "MBII-343"          "MIRG"              "ZDBF2"            
 [22] "IMPACT"            "NDN"               "NIBP"             
 [25] "AK139287"          "CCDC40-AS"         "PX00113D24"       
 [28] "PEC2"              "ZIM3"              "AK142849"         
 [31] "MKRN3"             "IPW"               "B830012L14RIK"    
 [34] "ADAM23"            "COMMD1"            "UBE3A"            
 [37] "WARS"              "BCL2L1"            "BLCAP"            
 [40] "CALCR"             "MAGEL2"            "CDH15"            
 [43] "COPG2"             "U80893"            "NR_015479-new"    
 [46] "GRB10"             "PEG10"             "SGCE"             
 [49] "PEG1"              "MCTS2"             "H13"              
 [52] "SNRPN"             "ZRSR1"             "MEG3"             
 [55] "RIAN"              "PEG3"              "PLAGL1"           
 [58] "1110014L15RIK-new" "ASB4"              "ZIM1"             
 [61] "KLHDC10"           "DLK1"              "GNAS"             
 [64] "PPP1R9A"           "PDE4D"             "A19"              
 [67] "ZFP264"            "KCNQ1OT1"          "AK050713"         
 [70] "RTL1"              "CDKN1C"            "PEG12"            
 [73] "KCNQ1"             "NESPAS"            "SLC38A4"          
 [76] "H19"               "IGF2"              "INS1"             
 [79] "TFPI2"             "AK043599"          "EDN3-new"         
 [82] "TMEM106A-new"      "DDC"               "RDM1"             
 [85] "TNK1-new"          "TREM1-new"         "2400006E01RIK-new"
 [88] "IGF2AS"            "UC008IHS.1-new"    "5133400J02RIK-new"
 [91] "PHLDA2"            "AF357359"          "GAB1"             
 [94] "SFMBT2"            "CD81"              "PHF17"            
 [97] "TSSC4"             "DACT2-new"         "SLC22A2"          
[100] "TSSC5"             "SLC22A3"           "KLF14"            
[103] "ATP10A"            "DCN"               "PON2"             
[106] "PON3"              "AMPD3"             "GABRB3"           
[109] "GATM"              "TBC1D12"           "DIO3"             
[112] "NAP1L4"            "MSUIT"             "ASCL2"            
[115] "OSBPL5"            "TNFRSF23"          "AIRN"             
[118] "HTR2A"             "MAPT"              "MKRN1-PS1"        
[121] "DLX5"              "IGF2R"             "TRY4-new"         
[124] "TSPAN32"           "ZIM2"             

and the column names are the tissue type that RNA expression was measured in

colnames(imprint)
 [1] "Genes"                   "Preoptic Area (ref)"    
 [3] "e17.5 Brain"             "Hypothalamus"           
 [5] "e15 Brain (ref)"         "e9.5 Yolk Sac"          
 [7] "Prefrontal Cortex (ref)" "e9.5 Placenta"          
 [9] "Whole Brain"             "Adrenal Gland"          
[11] "Olfactory Bulb"          "Cortex"                 
[13] "e9.5 Embryo (ref)"       "Hippocampus"            
[15] "TSCs (ref)"              "Cerebellum"             
[17] "Striatum"                "e17.5 Placenta (ref)"   
[19] "Pancreatic Islets"       "MEFs (ref)"             
[21] "Bladder"                 "Lung"                   
[23] "Duodenum"                "White Adipose"          
[25] "Skeletal Muscle"         "Skin"                   
[27] "Heart"                   "Stomach"                
[29] "Thymus"                  "Kidney"                 
[31] "Liver"                   "Whole Bone Marrow"      
[33] "Spleen"                  "Testes"                 

where the first element is the column name of the “Genes” column. You will manipulate these data later when we talk about tidy data and dplyr.

Finally, if you look at both the COVID-19 data and the imprinting data

us_deaths
# A tibble: 11,128 × 72
   week_end_date       state covid_19_deaths total_deaths percent_of_expected_…¹
   <dttm>              <chr>           <dbl>        <dbl>                  <dbl>
 1 2020-08-08 04:00:00 Alab…             264         1379                    143
 2 2020-08-15 04:00:00 Alab…             230         1305                    137
 3 2020-08-22 04:00:00 Alab…             209         1303                    140
 4 2020-08-29 04:00:00 Alab…             185         1216                    127
 5 2020-09-05 04:00:00 Alab…             156         1216                    125
 6 2020-09-12 04:00:00 Alab…             138         1232                    128
 7 2020-09-19 04:00:00 Alab…             139         1200                    125
 8 2020-09-26 04:00:00 Alab…             105         1183                    119
 9 2020-10-03 04:00:00 Alab…             111         1103                    116
10 2020-10-10 04:00:00 Alab…             137         1204                    127
# ℹ 11,118 more rows
# ℹ abbreviated name: ¹​percent_of_expected_deaths
# ℹ 67 more variables: pneumonia_deaths <dbl>,
#   pneumonia_and_covid_19_deaths <dbl>, influenza_deaths <dbl>,
#   pneumonia_influenza_or_covid_19_deaths <dbl>, state_abbrv <chr>,
#   weekly_actual_days_reporting_any_data <dbl>,
#   weekly_percent_days_reporting_any_data <dbl>, …
imprint
# A tibble: 125 × 34
   Genes      `Preoptic Area (ref)` `e17.5 Brain` Hypothalamus `e15 Brain (ref)`
   <chr>                      <dbl>         <dbl>        <dbl>             <dbl>
 1 PEC3                         -10           -10       -10               -10   
 2 UBE2NL                       -10           -10       -10               -10   
 3 TRAPPC9                       10            10         9.37             10   
 4 EIF2C2                        10            10        10                10   
 5 MIR344D-3                    -10           -10       -10               -10   
 6 MIR344G                      -10           -10       -10               -10   
 7 A930009L0…                    10            10        10                10   
 8 KCNK9                         10            10         7.53              6.02
 9 RASGRF1                      -10           -10       -10               -10   
10 INPP5F                       -10           -10       -10               -10   
# ℹ 115 more rows
# ℹ 29 more variables: `e9.5 Yolk Sac` <dbl>, `Prefrontal Cortex (ref)` <dbl>,
#   `e9.5 Placenta` <dbl>, `Whole Brain` <dbl>, `Adrenal Gland` <dbl>,
#   `Olfactory Bulb` <dbl>, Cortex <dbl>, `e9.5 Embryo (ref)` <dbl>,
#   Hippocampus <dbl>, `TSCs (ref)` <dbl>, Cerebellum <dbl>, Striatum <dbl>,
#   `e17.5 Placenta (ref)` <dbl>, `Pancreatic Islets` <dbl>,
#   `MEFs (ref)` <dbl>, Bladder <dbl>, Lung <dbl>, Duodenum <dbl>, …

you should notice that both are of the tibble type. A tibble is a data.frame but with enhancements. First and maybe most importantly, it prints nicely when you evaluate it at the command line and in Quarto notebooks. Second, it leaves the column names alone on conversion to a data frame. Thus, we get columns like Preoptic Area (ref) in the imprinting data instead of

make.names("Preoptic Area (ref)")
[1] "Preoptic.Area..ref."

So a “normal” data.frame would do this to the data:

data.frame(imprint)
                Genes Preoptic.Area..ref. e17.5.Brain Hypothalamus
1                PEC3            -10.0000   -10.00000    -10.00000
2              UBE2NL            -10.0000   -10.00000    -10.00000
3             TRAPPC9             10.0000    10.00000      9.36860
4              EIF2C2             10.0000    10.00000     10.00000
5           MIR344D-3            -10.0000   -10.00000    -10.00000
6             MIR344G            -10.0000   -10.00000    -10.00000
7       A930009L07RIK             10.0000    10.00000     10.00000
8               KCNK9             10.0000    10.00000      7.52570
9             RASGRF1            -10.0000   -10.00000    -10.00000
10             INPP5F            -10.0000   -10.00000    -10.00000
11             NAP1L5            -12.0000   -10.00000    -10.00000
12              USP29            -10.0000   -10.00000    -10.00000
13          HERC3-new             10.0000     4.35630     10.00000
14         GM9801-new             -3.5000   -10.00000    -10.00000
15             BEGAIN            -10.0000    -3.97640    -10.00000
16         PX00010K13            -10.0000   -10.00000    -10.00000
17              PEG13            -10.0000   -10.00000    -10.00000
18      1110006E14RIK             10.0000    10.00000      9.63620
19           MBII-343             10.0000    10.00000     10.00000
20               MIRG             10.0000    10.00000     10.00000
21              ZDBF2            -10.0000   -10.00000    -10.00000
22             IMPACT            -10.0000   -10.00000    -10.00000
23                NDN            -10.0000   -10.00000    -10.00000
24               NIBP            -10.0000   -10.00000    -10.00000
25           AK139287             11.2413    -9.03090    -12.00000
26          CCDC40-AS             -0.4000   -10.00000     -1.80000
27         PX00113D24             -4.8000   -10.00000    -10.00000
28               PEC2            -12.0000   -10.00000     -3.86220
29               ZIM3            -12.0000   -10.00000    -10.00000
30           AK142849              1.2600    10.00000      0.30103
31              MKRN3             -2.4000   -10.00000     -0.60206
32                IPW             -1.7000   -10.00000     -1.02400
33      B830012L14RIK              2.7000    10.00000      1.20410
34             ADAM23             -5.6000    -2.36250     -3.34180
35             COMMD1            -10.0000     0.59229     13.41050
36              UBE3A             -9.8000    -0.85767     13.49680
37               WARS             -1.1000    13.76700     13.94380
38             BCL2L1             -2.2000    -0.35194     -4.03450
39              BLCAP              8.2900    10.00000      1.60100
40              CALCR             10.0000    10.00000      9.63300
41             MAGEL2            -10.0000   -10.00000    -10.00000
42              CDH15            -10.0000   -10.00000     -0.67372
43              COPG2            -10.0000    10.00000     10.00000
44             U80893            -10.0000    -3.61240     -6.68070
45      NR_015479-new              5.1100    10.00000      1.90750
46              GRB10            -10.0000    10.00000    -10.00000
47              PEG10            -10.0000   -10.00000    -10.00000
48               SGCE            -10.0000   -10.00000    -10.00000
49               PEG1             13.3883   -10.00000     -1.45130
50              MCTS2             -6.3000    -2.80790     -0.87477
51                H13             10.0000    10.00000     10.00000
52              SNRPN            -10.0000   -10.00000    -10.00000
53              ZRSR1            -10.0000   -10.00000    -10.00000
54               MEG3             10.0000    10.00000     10.00000
55               RIAN             10.0000    10.00000     10.00000
56               PEG3            -10.0000   -10.00000    -12.00000
57             PLAGL1            -10.0000   -10.00000    -12.00000
58  1110014L15RIK-new             10.0000    11.86260     10.00000
59               ASB4             10.0000    10.00000     10.00000
60               ZIM1             10.0000    10.00000     10.00000
61            KLHDC10              1.2300     4.72600      3.49160
62               DLK1            -10.0000   -10.00000    -10.00000
63               GNAS             10.0000    10.00000     10.00000
64            PPP1R9A             10.0000     1.98370     10.00000
65              PDE4D              0.8700    -2.20540     -0.64566
66                A19            -12.0000   -12.00000    -12.00000
67             ZFP264            -12.0000   -12.00000    -12.00000
68           KCNQ1OT1             -4.9000   -10.00000    -10.00000
69           AK050713            -12.0000     7.22470    -12.00000
70               RTL1             -8.6000     9.79750     -1.07810
71             CDKN1C              0.4000    10.00000      2.70930
72              PEG12             11.0000   -10.00000    -11.00000
73              KCNQ1             -9.2000     0.81325    -11.00000
74             NESPAS             -1.8000   -12.00000    -12.00000
75            SLC38A4             11.0000   -10.00000    -11.00000
76                H19            -12.0000    10.00000      0.72700
77               IGF2              5.2100   -10.00000      2.13570
78               INS1            -12.0000   -12.00000    -12.00000
79              TFPI2            -12.0000     0.46376    -12.00000
80           AK043599              0.9600     1.81130      3.91340
81           EDN3-new             12.0112    11.12800    -11.00000
82       TMEM106A-new              0.3500   -11.00000    -12.00000
83                DDC              0.7200    12.20970      3.48480
84               RDM1             12.6094    -0.37552    -12.00000
85           TNK1-new             11.6994    -0.19605    -12.00000
86          TREM1-new            -12.0000   -12.00000    -12.00000
87  2400006E01RIK-new            -12.0000   -12.00000    -12.00000
88             IGF2AS            -12.0000    -2.84050    -12.00000
89     UC008IHS.1-new            -12.0000   -12.00000    -12.00000
90  5133400J02RIK-new            -12.0000   -12.00000    -12.00000
91             PHLDA2            -12.0000   -11.00000    -12.00000
92           AF357359              1.5000     6.02060      4.21440
93               GAB1             13.1799    12.49410      1.00960
94             SFMBT2             -0.5000    -0.37051     -0.33822
95               CD81             16.3169    14.94790      0.35510
96              PHF17             12.7728    11.64660     12.79730
97              TSSC4             13.6834     0.80918     13.55120
98          DACT2-new             12.2244     0.63047     12.32020
99            SLC22A2            -12.0000     0.67372    -12.00000
100             TSSC5            -12.0000     0.60206    -11.00000
101           SLC22A3             11.0000   -11.00000    -11.00000
102             KLF14                  NA     0.30103    -12.00000
103            ATP10A             12.1562    -1.88490     -0.42798
104               DCN             13.2672    12.38120      0.38981
105              PON2             13.3491    11.84640     12.88390
106              PON3             11.3954     0.84004      0.30103
107             AMPD3             -0.3000    12.17010     12.99300
108            GABRB3             -1.8000    14.06110     14.29740
109              GATM             14.0721    12.80860     13.73260
110           TBC1D12              0.4700    11.69720     11.99160
111              DIO3             -3.0000    -1.81130    -11.00000
112            NAP1L4              1.0600     0.33750     14.65260
113             MSUIT            -12.0000     0.30103    -12.00000
114             ASCL2            -12.0000   -12.00000    -12.00000
115            OSBPL5             12.4792     1.29110     12.84880
116          TNFRSF23             11.0000     1.57230    -11.00000
117              AIRN             12.6812    -3.58600     -0.90309
118             HTR2A             11.1261   -11.00000     11.56130
119              MAPT             15.9355    16.00000     15.32530
120         MKRN1-PS1             11.8964   -11.00000    -11.00000
121              DLX5             11.0000    13.25390     -0.12494
122             IGF2R              1.4000     3.89980      1.00580
123          TRY4-new            -12.0000   -12.00000    -12.00000
124           TSPAN32             11.0000    -0.19605    -11.00000
125              ZIM2            -12.0000   -12.00000    -12.00000
    e15.Brain..ref. e9.5.Yolk.Sac Prefrontal.Cortex..ref. e9.5.Placenta
1          -10.0000     -12.00000                -10.0000       0.00000
2          -10.0000     -12.00000                -10.0000     -12.00000
3           10.0000     -11.00000                 10.0000     -11.00000
4           10.0000      13.04470                  5.8600     -11.00000
5          -10.0000     -12.00000                -10.0000     -12.00000
6          -10.0000     -12.00000                -10.0000     -12.00000
7           10.0000     -12.00000                 10.0000     -12.00000
8            6.0200     -12.00000                  7.5400     -12.00000
9          -10.0000     -12.00000                -10.0000     -12.00000
10         -10.0000      13.20060                -10.0000     -11.00000
11         -10.0000       0.30103                -10.0000     -11.00000
12         -10.0000      -4.21440                -10.0000      -4.51540
13          -3.4000      12.08290                 -0.7000     -11.00000
14         -10.0000     -12.00000                 -2.2000     -12.00000
15          -6.4000      -1.58100                 -2.7000     -11.00000
16         -10.0000      -7.03220                -10.0000      -0.90695
17         -10.0000      -2.67980                -10.0000     -11.00000
18          10.0000      10.00000                 10.0000     -11.00000
19          10.0000      10.00000                 10.0000     -11.00000
20          10.0000      10.00000                 10.0000     -11.00000
21         -10.0000      -9.63620                -10.0000      -1.20410
22         -10.0000     -10.00000                -10.0000     -11.00000
23         -10.0000      -7.03220                -10.0000      -0.90695
24         -10.0000      -1.09290                -10.0000     -11.00000
25          -1.8000     -12.00000                 11.0000     -12.00000
26          11.2521     -11.00000                 11.0000     -11.00000
27          -8.1000      -1.50510                 -3.0000      -2.70930
28               NA     -12.00000                 12.9526     -12.00000
29         -12.0000     -12.00000                -12.0000      -0.30103
30           9.3300       2.18910                  3.9100     -11.00000
31         -10.0000     -12.00000                 11.1358     -11.00000
32         -10.0000     -12.00000                 -6.1000     -12.00000
33           6.0900       7.82680                  3.0100     -11.00000
34         -10.0000      12.03490                 -4.0000      -0.16273
35         -10.0000      15.04870                -10.0000     -11.00000
36         -10.0000      12.55580                -10.0000     -11.00000
37         -10.0000      13.77850                 -5.3000     -11.00000
38          -3.3000      14.10200                 -2.3000     -11.00000
39          10.0000      13.24600                  0.9300     -11.00000
40           9.6300       0.30103                -12.0000     -12.00000
41         -10.0000      -1.20410                 11.0000      -4.10650
42          -4.2000      11.77190                 -8.9000     -11.00000
43         -10.0000      13.25970                -10.0000     -11.00000
44         -10.0000     -12.00000                -10.0000     -12.00000
45          10.0000      12.09780                 10.0000     -11.00000
46           3.5100      10.00000                -10.0000     -11.00000
47         -10.0000     -10.00000                -10.0000     -10.00000
48         -10.0000     -10.00000                -10.0000     -10.00000
49         -10.0000     -10.00000                 -6.7000     -10.00000
50          -8.0000      -3.61240                 -5.7000      -0.82137
51           7.9500       6.74360                 12.6560     -11.00000
52         -10.0000     -10.00000                -10.0000     -10.00000
53         -10.0000      -4.51540                -10.0000     -11.00000
54          10.0000      10.00000                 10.0000     -11.00000
55          10.0000      10.00000                 10.0000     -11.00000
56         -10.0000     -10.00000                -10.0000     -10.00000
57         -10.0000     -10.00000                -10.0000     -10.00000
58           7.9800       5.01540                  0.9400     -11.00000
59          10.0000      10.00000                 11.0000     -11.00000
60          10.0000      10.00000                  0.3900     -11.00000
61           2.3100       4.46870                 13.6117     -11.00000
62         -10.0000     -10.00000                 -0.3000     -10.00000
63           0.9000      10.00000                 -0.7000     -11.00000
64          13.8063       7.53280                  1.7600     -11.00000
65          12.2137     -11.00000                 13.2206     -11.00000
66         -12.0000     -12.00000                -12.0000     -12.00000
67               NA      -0.30103                -12.0000     -12.00000
68         -10.0000     -10.00000                -10.0000     -10.00000
69           2.4000       1.20410                 11.0000     -11.00000
70           0.7600       2.44680                  1.4500      11.58190
71          10.0000      10.00000                  2.9700     -11.00000
72         -10.0000      -3.01030                -12.0000      -0.37736
73         -10.0000       0.30103                -10.0000     -11.00000
74          -4.4100     -12.00000                      NA     -12.00000
75         -10.0000     -10.00000                 11.0000     -10.00000
76          10.0000      10.00000                -12.0000     -11.00000
77         -10.0000     -10.00000                  5.8800     -10.00000
78         -12.0000     -12.00000                -12.0000     -12.00000
79         -12.0000      11.18970                -12.0000     -11.00000
80         -12.0000     -12.00000                  1.0400     -12.00000
81           0.5500       0.30103                 -0.4000     -11.00000
82          13.0977      13.17320                 -0.3000     -11.00000
83           1.2100      13.33510                 -0.3000      -0.30103
84          13.2501       0.37650                 11.9127     -11.00000
85          11.0000      12.52850                 11.6720     -11.00000
86         -12.0000     -11.00000                -12.0000     -11.00000
87         -12.0000     -11.00000                -12.0000     -10.00000
88          -0.3000     -10.00000                -12.0000     -10.00000
89         -12.0000      -6.39540                -12.0000     -10.00000
90         -12.0000      -4.51540                -12.0000      -2.84050
91         -12.0000      10.00000                -12.0000     -11.00000
92           0.6000       9.84810                -12.0000     -11.00000
93          12.3884     -10.00000                  0.3200     -10.00000
94           0.3200     -10.00000                 11.4211     -10.00000
95           2.3200      10.00000                 15.7044     -11.00000
96          13.4857      -4.15270                 12.6979     -11.00000
97          13.9728       3.16310                 -0.3000     -11.00000
98          11.0000       7.96680                 14.2684     -11.00000
99          11.0300      10.00000                -12.0000     -12.00000
100         11.6467      10.00000                 11.0000     -11.00000
101         11.0000       3.79950                 11.2880     -11.00000
102        -12.0000       2.32060                -12.0000     -11.00000
103         14.9647     -11.00000                 -0.6000     -11.00000
104         16.3843      -0.42640                  0.3000     -11.00000
105         13.6065      12.55130                 13.3129     -11.00000
106         13.3827       0.30103                 11.3866     -11.00000
107         13.4317     -11.00000                 12.5719     -11.00000
108         12.7100     -12.00000                 14.6459     -12.00000
109         12.3004      11.64800                 14.1101     -11.00000
110         12.5794     -11.00000                 -0.6000     -11.00000
111         11.9765      -1.62030                 11.0369     -11.00000
112          0.5400       1.60980                 14.3327     -11.00000
113        -12.0000     -12.00000                -12.0000     -12.00000
114        -12.0000     -12.00000                 11.0000     -11.00000
115         12.8144       1.19970                 12.9982     -11.00000
116         11.3259       0.30103                 11.0832     -11.00000
117        -10.0000      -2.23210                 11.1078      -0.50515
118          0.7700     -12.00000                 12.2549     -11.00000
119         10.0000       0.19605                 15.4131     -11.00000
120          0.5100      -0.30103                  0.4700     -11.00000
121              NA     -12.00000                 11.7390     -12.00000
122         13.1517      10.00000                 12.5278     -11.00000
123        -12.0000     -12.00000                -12.0000     -12.00000
124         11.1042      11.82390                 11.0000     -11.00000
125        -12.0000     -12.00000                -12.0000     -12.00000
    Whole.Brain Adrenal.Gland Olfactory.Bulb    Cortex e9.5.Embryo..ref.
1     -10.00000     -12.00000      -10.00000 -10.00000          -12.0000
2     -10.00000     -12.00000      -10.00000 -10.00000          -12.0000
3       9.24530     -12.00000       10.00000  10.00000            0.8400
4      10.00000       1.14430        8.15340  10.00000            1.0500
5      -7.53950      -0.60206      -10.00000 -10.00000           -1.9000
6      -4.69840     -12.00000      -10.00000 -10.00000          -12.0000
7      10.00000      10.00000       10.00000  10.00000          -12.0000
8       5.54350       9.03090        8.12780   9.66530          -12.0000
9     -10.00000     -10.00000      -10.00000 -10.00000          -12.0000
10    -10.00000      -0.92400      -10.00000 -10.00000           13.5257
11    -10.00000      -0.60206      -10.00000 -10.00000          -12.0000
12    -10.00000      -5.11750      -10.00000 -10.00000           -5.8000
13      8.02800      11.92190        2.02380  10.00000           12.5960
14     -3.91340     -12.00000      -10.00000 -10.00000          -10.0000
15     -9.33690      -1.50510       -4.31450  -1.88190           11.0951
16    -10.00000     -12.00000      -10.00000 -10.00000          -12.0000
17    -10.00000     -12.00000      -10.00000 -10.00000          -10.0000
18     10.00000      10.00000       10.00000   6.94460          -12.0000
19     10.00000      10.00000       10.00000  10.00000            4.9700
20     10.00000      10.00000       10.00000  10.00000           10.0000
21    -10.00000     -10.00000      -10.00000 -10.00000          -10.0000
22    -10.00000     -10.00000      -10.00000 -10.00000          -10.0000
23    -10.00000     -10.00000      -10.00000 -10.00000          -12.0000
24    -10.00000     -10.00000      -10.00000 -10.00000           12.7936
25    -11.00000     -12.00000       -1.80620 -12.00000           11.0000
26    -11.00000     -11.00000       -1.80000  -2.40000           11.0000
27     -3.31130      -0.30103      -10.00000 -10.00000           -1.5000
28     -3.86220     -12.00000       -8.69100  -4.81650          -12.0000
29    -10.00000     -12.00000      -10.00000 -10.00000          -12.0000
30      1.96890       2.40820        6.62270   0.30103            0.3000
31     -0.30103     -12.00000       -7.53950  -0.30103          -12.0000
32     -2.43270     -12.00000       -3.19940  13.95030          -12.0000
33      5.82680       3.91340       10.00000   1.50510            0.6000
34     -0.85067      -0.86766       -5.26470  -2.65180           13.0481
35      0.96108       0.96108        0.30103 -12.00000           15.1332
36      0.69523      13.27210       -2.94960  12.84000           13.9337
37     13.68710      -0.46095       13.70410  13.86160           14.0957
38     14.31420       0.76330       -0.84301  14.16630           14.4235
39      0.25794      -0.55502       14.50990  13.79540          -12.0000
40      2.70930     -12.00000      -12.00000 -12.00000          -12.0000
41     -3.61240      -1.20410      -12.00000 -12.00000          -12.0000
42     12.24020      -0.76479       -1.74840  -0.96108          -12.0000
43      3.70310       0.69211        0.89648   9.10600           14.7958
44     -1.50510     -12.00000       -2.10720  -3.14540          -12.0000
45      4.96890     -12.00000       12.95140   1.20440                NA
46    -10.00000      10.00000      -10.00000 -10.00000           10.0000
47    -10.00000     -10.00000      -10.00000 -10.00000          -10.0000
48    -10.00000     -10.00000      -10.00000 -10.00000          -10.0000
49     -7.19290     -10.00000      -10.00000 -10.00000           -6.6000
50     -1.13670      -6.90950       -1.00090  -3.79040          -12.0000
51     10.00000       3.27360       10.00000   2.96890            1.2600
52    -10.00000     -10.00000      -10.00000 -10.00000          -12.0000
53    -10.00000     -10.00000      -10.00000 -10.00000          -12.0000
54     10.00000      10.00000       10.00000  10.00000           10.0000
55     10.00000      10.00000       10.00000  10.00000           10.0000
56    -10.00000     -10.00000      -10.00000 -10.00000          -10.0000
57    -10.00000     -10.00000      -10.00000 -10.00000          -10.0000
58    -11.00000       0.16273      -11.00000 -11.00000          -12.0000
59      0.30103       7.57960      -11.00000   0.12494           10.0000
60      2.01050       0.50515        0.30103  -0.41206           10.0000
61      0.43794      13.64640       13.26410   0.71776            6.0100
62    -10.00000     -10.00000       -1.05680  -0.30103           -7.5000
63     10.00000       2.85300        7.84390   1.44400           16.0336
64     13.32800      10.00000       13.17780  14.22690            0.3100
65     12.23180       0.63856       13.41230  13.09920           13.4644
66    -12.00000     -12.00000      -12.00000 -12.00000          -12.0000
67    -12.00000     -12.00000       -0.90309 -12.00000          -12.0000
68    -10.00000     -10.00000      -10.00000 -10.00000          -12.0000
69      0.90309     -12.00000        3.31130 -12.00000            5.4100
70      4.25100      -0.50515        7.80850  11.17690            8.1200
71      0.96108       8.72990        1.61050   2.70930           10.0000
72     -0.30103     -12.00000       -0.90309 -12.00000          -12.0000
73      0.30103      11.55000      -11.00000  -0.60206          -10.0000
74    -12.00000     -12.00000      -12.00000 -12.00000           -2.1000
75    -11.00000      -6.36250      -11.00000 -11.00000           -8.3000
76      2.40820     -12.00000       10.00000 -12.00000           10.0000
77     10.00000      -0.30103       10.00000   0.76479          -10.0000
78    -12.00000     -12.00000       -0.43870 -12.00000          -12.0000
79    -12.00000     -12.00000      -12.00000 -12.00000          -12.0000
80      4.97920      10.00000        7.91050   3.36560          -12.0000
81      0.30103       4.83130        0.30103  -0.53681          -12.0000
82    -11.00000       4.93330      -11.00000 -11.00000          -12.0000
83     12.73610      -4.51080       12.18790   0.42371           12.5414
84     12.18730       0.41402       11.90630  -0.59229          -12.0000
85     -0.30103     -12.00000        0.30103  11.16620          -12.0000
86    -12.00000     -12.00000      -11.00000 -12.00000          -12.0000
87    -12.00000     -12.00000      -12.00000 -12.00000          -12.0000
88    -11.00000      -0.30103      -11.00000 -12.00000           -1.2000
89    -12.00000     -12.00000      -12.00000 -12.00000          -12.0000
90    -12.00000     -12.00000      -12.00000 -12.00000          -12.0000
91    -12.00000     -12.00000      -12.00000 -12.00000          -12.0000
92      3.31130       0.60206        2.70930   3.91340            0.9000
93     12.49310      -1.12300       -0.51717   0.34606           12.9091
94     -0.53681     -11.00000      -11.00000 -11.00000           11.6355
95     15.99100       0.84497       15.66140  15.48850          -12.0000
96     11.73660      13.31840        0.48959   0.44078           13.6469
97     13.27740      13.48150       13.27560  13.25630           14.5999
98     13.57340     -12.00000       11.97360  -0.39263          -12.0000
99    -12.00000     -12.00000        0.23846 -12.00000          -12.0000
100   -11.00000       0.90309        0.59533 -11.00000          -12.0000
101   -11.00000     -12.00000      -11.00000 -11.00000          -12.0000
102   -12.00000     -12.00000      -12.00000 -12.00000          -12.0000
103    11.15860      14.34720       12.15800  11.07360           -0.6000
104     0.26049      16.00000       12.95370 -11.00000          -12.0000
105    12.81420      13.32950       12.81090  13.11130            0.8000
106    -0.20548      13.28200      -11.00000 -11.00000          -12.0000
107    12.24720      13.29180       12.65460   0.62088          -12.0000
108    13.68450      12.12240       14.46400  -0.39315           11.4819
109    14.12940      11.75490       13.65550  13.92780          -12.0000
110    11.04570      11.96380       -0.50936  11.82030           12.6830
111    -0.18293      11.01050      -11.00000 -11.00000           11.1931
112    14.46700      14.09320       14.36620  14.12760           15.6128
113   -12.00000     -12.00000      -12.00000 -12.00000          -12.0000
114   -12.00000     -12.00000      -12.00000 -12.00000          -12.0000
115     0.71606      12.39300       12.34840  12.74380           14.0452
116     0.43976       0.46376      -11.00000 -11.00000          -12.0000
117    -2.40820      -4.51540      -10.00000  -0.90309          -10.0000
118    11.38690     -12.00000        0.47378  11.99690          -12.0000
119    14.93340      14.24830       -0.64229   0.38636           12.3452
120   -11.00000     -12.00000      -11.00000 -11.00000          -12.0000
121    -0.56763     -12.00000       -1.07520  11.23760          -12.0000
122     0.30103      10.00000       10.00000   1.03250            2.1200
123   -12.00000     -12.00000      -12.00000 -12.00000          -12.0000
124   -12.00000     -11.00000      -11.00000 -11.00000           11.2922
125   -12.00000     -12.00000      -12.00000 -12.00000          -12.0000
    Hippocampus TSCs..ref. Cerebellum  Striatum e17.5.Placenta..ref.
1     -10.00000   -12.0000   -2.40820  -5.11750             -12.0000
2     -10.00000   -12.0000   -1.80620  -9.26890             -12.0000
3      10.00000    11.0000    5.10170 -12.00000               0.8000
4       8.53000    12.1818    6.57550   2.73780               1.0300
5      -3.61240   -12.0000  -10.00000  -9.26890             -12.0000
6      -2.76730   -12.0000  -10.00000  -6.92370             -12.0000
7       6.11080   -12.0000   10.00000   0.60206             -12.0000
8       2.23210   -12.0000    2.42380   0.90309             -12.0000
9     -10.00000   -12.0000  -10.00000 -10.00000             -12.0000
10    -10.00000    13.3267  -10.00000 -10.00000              12.2244
11    -10.00000   -12.0000  -10.00000  -9.63300             -12.0000
12    -10.00000   -12.0000  -10.00000 -10.00000             -10.0000
13      2.96370     0.6000    4.15290   5.38390               2.1100
14     -4.21440   -12.0000   -3.91340  -2.43270             -12.0000
15     -4.73660   -12.0000   13.03330  -2.77800             -12.0000
16    -10.00000   -12.0000  -10.00000 -12.00000              -2.6000
17    -10.00000   -12.0000  -10.00000 -12.00000              -5.1000
18     10.00000   -12.0000   10.00000  10.00000             -12.0000
19     10.00000   -12.0000   10.00000  10.00000             -12.0000
20     10.00000     2.4000   10.00000  10.00000              10.0000
21     -5.41850   -12.0000   -5.71960 -10.00000              -0.5000
22    -10.00000    -0.5000  -10.00000 -10.00000             -10.0000
23    -10.00000   -12.0000  -10.00000 -10.00000              -2.6000
24    -10.00000    -0.8000  -10.00000 -10.00000              -0.5000
25     -0.30103   -12.0000   -0.30103  -0.60206             -12.0000
26     -2.10000   -12.0000  -11.00000 -11.00000             -12.0000
27     -6.32160   -10.0000   -7.82680  -3.31130             -12.0000
28     -1.80620   -12.0000  -12.00000  -0.30103             -12.0000
29    -10.00000   -12.0000  -10.00000 -12.00000             -12.0000
30      0.30103   -12.0000    2.70930   1.20410             -12.0000
31     -0.60206    -0.3000   -1.20410 -12.00000             -12.0000
32     -2.42380   -12.0000   -7.91050  -0.84004             -12.0000
33      1.50510   -12.0000    5.71960   5.71960               0.6700
34     13.43920   -12.0000   13.99980  -3.75400              -1.9000
35      1.68410   -12.0000    0.30103   0.60206             -12.0000
36     12.79600    13.0068   12.99940   3.80630             -12.0000
37     13.61540    -0.5000   13.75710  -0.31874             -12.0000
38     14.34300    -0.4000   14.92150  -0.23613              14.4629
39     14.14720    14.7147   14.79260  12.26590             -12.0000
40    -12.00000   -12.0000  -12.00000   0.30103             -12.0000
41     -0.90309   -12.0000   -0.30103  -4.21440             -12.0000
42     -5.63370   -12.0000   14.13670  -0.41206             -12.0000
43      2.14300   -12.0000    0.91793   1.57150              -1.0000
44     -0.90309   -12.0000  -12.00000 -12.00000             -12.0000
45      5.98330    12.6591    4.53930  -3.61240             -12.0000
46     -2.23210    10.0000   -8.01300  -6.39540             -12.0000
47     -7.82680   -10.0000  -10.00000 -10.00000              -6.7000
48    -10.00000   -10.0000  -10.00000 -10.00000              -2.6000
49     -2.24890   -12.0000   -1.95070 -10.00000              14.9535
50     -2.01750    -3.0000   -0.90309  -6.39540             -12.0000
51      8.41680     0.3300    0.84109   2.45510               0.3900
52    -10.00000   -12.0000  -10.00000 -10.00000             -12.0000
53    -10.00000   -12.0000  -10.00000 -10.00000             -12.0000
54     10.00000   -12.0000   10.00000  10.00000             -12.0000
55     10.00000   -12.0000   10.00000  10.00000               7.8000
56    -10.00000   -12.0000  -10.00000 -10.00000             -12.0000
57    -10.00000   -12.0000  -10.00000 -10.00000             -10.0000
58    -11.00000   -12.0000  -11.00000 -11.00000             -12.0000
59    -11.00000   -12.0000  -11.00000   0.30103               1.7600
60    -11.00000   -12.0000  -11.00000 -11.00000             -12.0000
61     13.04630   -12.0000   13.42660   0.43062             -12.0000
62     -1.96890   -12.0000   -1.20410 -10.00000              -9.7000
63     15.30910    -3.9000    1.22070   1.49380               8.5700
64     13.50960    12.8573   12.86500  14.93070               5.2900
65     12.22410   -12.0000   12.53510  -1.38220               1.5400
66    -12.00000   -12.0000  -12.00000 -12.00000             -12.0000
67     -0.30103   -12.0000  -12.00000 -12.00000             -12.0000
68    -10.00000   -12.0000  -10.00000 -10.00000             -10.0000
69      0.30103   -12.0000    1.50510 -12.00000             -12.0000
70      2.49840     1.5000    3.43850 -12.00000              -3.1000
71    -12.00000   -12.0000    2.40820 -12.00000             -12.0000
72     -0.30103     0.4600  -12.00000 -12.00000             -12.0000
73      0.30103    -9.9000    0.30103   0.30103              -9.4000
74    -12.00000    -9.9000  -12.00000 -12.00000              -4.6000
75    -11.00000   -10.0000  -12.00000   0.30103             -10.0000
76      0.30103   -12.0000    7.22470 -12.00000             -12.0000
77     10.00000   -12.0000   10.00000   0.60206             -12.0000
78    -12.00000   -12.0000  -12.00000 -12.00000             -12.0000
79    -12.00000   -12.0000  -12.00000 -12.00000             -12.0000
80      1.50510   -12.0000    2.66320   1.80620             -12.0000
81      0.54395   -12.0000    0.63696  -0.30103             -12.0000
82     -0.96108    14.1389  -11.00000 -11.00000              13.3883
83     11.25080    15.6899    0.40311   0.43976             -12.0000
84     11.80480    14.6233   11.91180  12.02900              13.3116
85    -11.00000    -0.4000  -12.00000   0.30103             -12.0000
86    -12.00000   -12.0000  -12.00000 -12.00000             -12.0000
87    -12.00000   -12.0000  -12.00000 -12.00000             -12.0000
88      0.30103    11.0000   -0.72700 -12.00000             -12.0000
89    -12.00000    -1.5000  -12.00000 -12.00000             -12.0000
90    -12.00000    -4.7000  -12.00000 -12.00000               0.3900
91    -12.00000    10.0000  -12.00000 -12.00000             -12.0000
92      0.90309    10.0000    0.60206   1.50510             -12.0000
93     -0.48086   -10.0000   12.58520  12.07680              -4.0000
94    -11.00000   -10.0000   -0.41206 -11.00000             -10.0000
95     15.64540     9.7000   15.91680  16.00000             -12.0000
96     11.42320   -10.0000    0.79548  12.65820              -5.9000
97     -0.81142     2.5200   -0.93101  13.42260             -12.0000
98     13.03250     1.9100   11.49920  12.05820             -12.0000
99    -12.00000   -12.0000  -12.00000 -12.00000             -12.0000
100   -12.00000     0.7600  -11.00000  -0.30103               1.9700
101    -0.30103   -12.0000   -0.12494   0.62812               6.9200
102   -12.00000   -12.0000  -12.00000 -12.00000               4.0100
103     0.88200   -12.0000   11.47200  -0.54777             -12.0000
104    12.01520   -12.0000   12.75360  12.15430             -12.0000
105    12.53320   -12.0000   12.81330  12.90150               0.3800
106     0.50515   -12.0000  -11.00000 -11.00000             -12.0000
107     0.65499   -12.0000   12.35000  12.94270              -0.5000
108    14.53670   -12.0000   13.72620  14.58180             -12.0000
109    -0.28167   -12.0000   13.87990  14.30690             -12.0000
110    11.13340    -0.6000   11.57410  -0.86171             -12.0000
111     0.30103    11.0000    0.12494  -0.30103             -12.0000
112    14.18020    15.2339   -0.60139   0.50973              15.1800
113   -12.00000   -12.0000  -12.00000 -12.00000             -12.0000
114   -12.00000     1.2000  -12.00000 -12.00000              14.1592
115    11.66530     1.0200   11.66590  11.63020              13.1799
116   -11.00000   -12.0000    0.50515  -0.30103             -12.0000
117   -12.00000    -3.0000  -10.00000  -0.60206             -10.0000
118     0.30103   -12.0000   -0.18293  -0.30103             -12.0000
119    14.90530    12.7038   15.27730  15.17110              11.5230
120   -11.00000   -12.0000   -0.37416   0.30103             -12.0000
121    11.19040   -12.0000  -12.00000  12.35690             -12.0000
122    11.80560    10.0000   10.00000  11.70800              13.9329
123   -12.00000   -12.0000  -12.00000 -12.00000             -12.0000
124   -12.00000   -12.0000  -12.00000  -0.12494             -12.0000
125   -12.00000   -12.0000  -12.00000 -12.00000             -12.0000
    Pancreatic.Islets MEFs..ref.   Bladder      Lung  Duodenum White.Adipose
1           -12.00000   -12.0000 -12.00000   0.00000 -12.00000     -12.00000
2           -12.00000   -12.0000 -12.00000 -12.00000 -12.00000     -12.00000
3             1.05310   -12.0000 -12.00000   1.75490   0.56672     -12.00000
4             1.22330    13.5886 -11.00000  11.82630   0.30103       0.30103
5            -4.95140   -12.0000  -0.60206  -0.30103  -0.30103     -12.00000
6            -0.69782   -12.0000  -0.90309  -0.90309  -0.90309     -12.00000
7           -12.00000   -12.0000 -12.00000 -12.00000 -12.00000     -12.00000
8           -12.00000   -12.0000 -12.00000 -12.00000 -12.00000     -12.00000
9            13.12390   -12.0000 -12.00000 -11.00000 -12.00000     -12.00000
10          -10.00000    14.4902  12.61700  -0.81648  12.61830      12.22320
11          -10.00000   -12.0000 -12.00000  -1.50510  -3.91340     -12.00000
12           -6.02060   -12.0000 -12.00000 -12.00000  -0.90309     -12.00000
13           -1.03420    12.6959   0.26869  11.08790   0.79286      12.43920
14          -12.00000   -12.0000 -12.00000 -12.00000 -12.00000     -12.00000
15           -0.67372   -12.0000 -12.00000 -11.00000 -11.00000      -0.12494
16           -6.62270   -10.0000 -12.00000 -10.00000  -7.52570     -12.00000
17          -10.00000    -3.9000 -12.00000 -10.00000 -10.00000     -12.00000
18            8.12780   -12.0000   7.22470   1.96890   0.30103       3.01030
19           10.00000   -12.0000   8.42880   0.60206   5.41850       3.01030
20           10.00000    10.0000  10.00000   1.50510   3.61240       1.20410
21          -10.00000    -9.5000  -2.70930 -12.00000  -1.20410      -0.30103
22          -10.00000   -10.0000 -10.00000 -10.00000 -10.00000     -10.00000
23           -6.62270   -10.0000  -6.36250 -10.00000  -7.52570     -10.00000
24           -2.62830    -2.6000 -10.00000 -10.00000 -10.00000      -3.69870
25          -12.00000   -12.0000 -12.00000 -11.00000 -12.00000     -12.00000
26          -11.00000   -12.0000 -12.00000  11.64490 -12.00000     -12.00000
27           -7.52570    -2.1000 -12.00000  -0.30103  -4.51540     -12.00000
28          -12.00000   -12.0000 -12.00000 -12.00000 -12.00000     -12.00000
29           -1.50510   -12.0000 -12.00000 -12.00000 -12.00000     -12.00000
30          -12.00000     0.9000 -12.00000   0.30103 -12.00000     -12.00000
31          -12.00000   -12.0000 -12.00000  -0.90309 -12.00000     -12.00000
32          -12.00000   -12.0000 -12.00000 -12.00000 -12.00000     -12.00000
33            0.30103   -12.0000   2.70930   0.50515 -12.00000       0.60206
34          -11.00000    13.0864  12.09520  -2.75140  -0.24973      12.00250
35           13.67350     0.5900  -0.16273   0.65554   0.16273      -0.20548
36           12.09440     1.0200   0.43143  -0.41090  12.38190      13.33170
37            1.86030   -12.0000   0.36056  13.86970  13.96830      13.26840
38           13.76330    14.6533  13.36260  15.10170  -1.01600       0.37416
39            0.43910    15.3495  12.09650  13.51930  13.68170       2.84050
40          -12.00000   -12.0000 -12.00000 -11.00000 -12.00000     -12.00000
41          -12.00000   -12.0000 -12.00000 -12.00000 -12.00000     -12.00000
42          -12.00000   -12.0000 -12.00000 -11.00000 -12.00000     -12.00000
43           12.86530   -12.0000  13.56480  12.85930   0.34803       1.65670
44          -12.00000   -12.0000 -12.00000 -12.00000 -12.00000     -12.00000
45            0.67372    12.9324 -12.00000  11.56970   0.43976     -12.00000
46            7.22470   -12.0000  10.00000  10.00000   4.13980      10.00000
47          -12.00000   -10.0000 -10.00000  -3.61240  -1.20410     -10.00000
48           -8.28070   -10.0000 -10.00000 -10.00000 -10.00000     -10.00000
49           -2.93000   -12.0000  -4.51540  -3.79950  -0.47911     -10.00000
50           -0.46376   -12.0000  -4.81650  -2.67980  -1.96890     -10.00000
51            1.01510   -12.0000   1.00050  10.00000   1.76590       9.57010
52          -10.00000   -10.0000 -10.00000 -10.00000 -10.00000     -10.00000
53          -10.00000   -12.0000 -10.00000 -10.00000  -9.63300     -10.00000
54           10.00000    10.0000  10.00000  10.00000  10.00000      10.00000
55           10.00000    10.0000  10.00000   9.63300  10.00000      10.00000
56          -10.00000   -10.0000  -8.72990 -10.00000 -10.00000     -10.00000
57           -9.33190   -10.0000 -10.00000 -10.00000 -10.00000     -10.00000
58           10.00000     1.5000   1.80620 -11.00000 -12.00000       0.00000
59          -11.00000     5.6300   1.03420 -11.00000   8.84750       0.30103
60           10.00000   -12.0000 -12.00000 -12.00000 -12.00000       0.30103
61            0.55824   -12.0000   0.40253  12.38880  13.13620      13.31980
62           -0.60206    -1.7000  -7.22470  -0.12494  -0.30103     -12.00000
63           15.37470    -1.5000  15.64500   0.69211   1.66340      15.89600
64           -0.34948   -12.0000  12.13800  12.22020   0.90471      12.21350
65           -0.46992    12.6569  12.59060  11.50420  11.99670       0.53813
66           -0.30103   -12.0000 -12.00000 -12.00000 -12.00000     -12.00000
67          -12.00000   -12.0000 -12.00000 -12.00000 -12.00000     -12.00000
68          -10.00000   -12.0000 -10.00000 -10.00000  -6.03820      -6.68070
69          -12.00000    10.0000   0.30103 -12.00000 -12.00000     -12.00000
70          -12.00000    10.0000 -11.00000 -11.00000 -12.00000     -12.00000
71            0.60206    10.0000 -12.00000   2.93000   1.61050       1.50510
72          -12.00000   -10.0000 -12.00000  -3.31130  -0.30103     -12.00000
73            0.61363   -10.0000 -11.00000  12.42040  13.58200      -0.40311
74          -12.00000    -4.8000 -12.00000 -12.00000 -12.00000     -12.00000
75           14.52850   -10.0000  -2.10720  11.32540  -1.83130     -12.00000
76          -12.00000   -12.0000   1.50510   4.17970   6.62270     -12.00000
77           -0.94584   -12.0000  -0.50515  -8.29050  -1.80620      -0.30103
78           16.00000   -12.0000 -12.00000 -12.00000 -12.00000     -12.00000
79           11.53510   -12.0000 -11.00000  -0.46376 -11.00000     -11.00000
80          -12.00000   -12.0000 -12.00000 -12.00000 -12.00000     -12.00000
81          -11.00000   -12.0000   0.43976  13.16200   2.01320     -12.00000
82            0.84424   -12.0000   2.28410  12.03290   4.06220       0.89147
83           -0.75845    -0.4000  11.54980  11.14270  14.69610     -12.00000
84           12.48100    11.8889  13.67570  13.70920  13.65530      13.17990
85           12.69130   -12.0000   0.34315  12.84660   0.27699      -0.96108
86          -12.00000   -12.0000 -12.00000  -0.61363   0.12494     -12.00000
87          -11.00000   -12.0000 -12.00000 -12.00000 -12.00000     -12.00000
88          -12.00000   -12.0000 -12.00000 -12.00000 -12.00000     -12.00000
89          -11.00000   -12.0000 -12.00000 -12.00000 -12.00000     -12.00000
90          -12.00000   -12.0000 -12.00000 -12.00000 -12.00000     -12.00000
91          -12.00000   -12.0000  12.16220  11.04610  11.33490     -12.00000
92            0.30103   -12.0000 -12.00000 -12.00000 -12.00000     -12.00000
93           11.45430    12.8352  -0.68814   0.31448  12.49550      11.94770
94          -11.00000    11.1709  -0.51767   0.40311  -0.64481      -0.43976
95           -0.32706   -12.0000  16.00000  15.97490  15.95170      16.00000
96           12.59380    11.9248  12.78190  11.79810  -0.56494       1.14760
97           14.83290   -12.0000   0.93692  13.29960  14.02200      13.24800
98           13.16590   -12.0000   0.60206  -0.43917  11.74560      -0.20548
99          -11.00000   -12.0000 -12.00000 -12.00000 -12.00000     -11.00000
100           1.14430   -12.0000   1.14830   1.14430   0.32028       1.20410
101         -11.00000   -12.0000 -11.00000  11.35040 -11.00000      13.45530
102         -12.00000   -12.0000 -12.00000 -12.00000 -12.00000       0.30103
103         -11.00000    11.3703   0.32732  11.42040  -0.34803      12.85540
104          13.94090     0.3500  16.00000  14.26060 -12.00000      16.00000
105          12.52920    12.0933  13.77180  13.75200  14.80370      13.87150
106          11.52350   -12.0000  12.98640  13.13640  12.49390      14.24630
107         -11.00000    12.2872  11.98320   0.32136  12.86100      12.95330
108           0.95556   -12.0000 -11.00000   0.30103  -0.59189     -12.00000
109          13.91150   -12.0000  11.70320  11.33090  11.89430      11.68470
110          11.15140    11.9990  11.70770  11.05270  -0.30103       0.26446
111         -12.00000   -12.0000 -12.00000  -0.12494 -12.00000     -12.00000
112          13.89690    14.9810  14.14040  14.33960  -0.40575      14.30780
113         -12.00000   -12.0000 -12.00000  -0.12494 -12.00000     -12.00000
114         -12.00000   -12.0000 -12.00000 -12.00000  12.14400     -12.00000
115          12.17570    13.1345  13.05090  13.39700  13.04470      12.60000
116          11.51250   -12.0000 -11.00000 -11.00000  12.03100      -0.59908
117          -2.40820   -12.0000 -10.00000  -3.01030  -4.21440      -3.31130
118         -12.00000    11.3106 -12.00000 -12.00000   0.30103     -12.00000
119          12.95380   -12.0000   0.40906  14.38800   0.38608      11.02740
120         -11.00000   -12.0000 -12.00000  -0.30103 -11.00000      -0.30103
121         -12.00000   -12.0000 -12.00000 -12.00000 -12.00000     -12.00000
122          10.00000    10.0000  10.00000  10.00000  10.00000      10.00000
123           0.38825   -12.0000 -12.00000 -12.00000 -12.00000     -12.00000
124          -0.12494   -12.0000  -0.12494  11.63630   0.30103     -11.00000
125         -12.00000   -12.0000 -12.00000 -12.00000 -12.00000     -12.00000
    Skeletal.Muscle      Skin     Heart   Stomach    Thymus    Kidney     Liver
1         -11.00000 -12.00000 -12.00000 -12.00000 -12.00000   0.00000 -11.00000
2         -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
3         -11.00000   0.40265 -12.00000 -11.00000   0.69371   0.83190 -11.00000
4          12.40700  -0.30103  -0.30103  11.52860  12.00680  11.55380 -11.00000
5         -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
6         -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
7         -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
8         -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
9         -12.00000  -2.40820 -12.00000  -0.90309 -11.00000 -12.00000 -12.00000
10        -11.00000  12.28860   0.30103  11.33300  12.59200  12.78240  11.52870
11         -0.30103 -12.00000 -12.00000  -0.64481 -12.00000  -1.50510 -12.00000
12         -0.30103 -12.00000 -12.00000  -0.60206 -12.00000 -12.00000 -12.00000
13          0.71274  12.06900  12.49260  11.96390  13.01840  12.13390  -0.24973
14        -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
15          0.50515 -11.00000 -12.00000  -0.30103 -11.00000 -11.00000 -12.00000
16         -5.41850  -2.70930 -12.00000  -0.96108  -0.60206 -12.00000  -0.90309
17         -4.81650  -2.10720 -12.00000  -2.70930  -2.10720  -5.71960  -2.40820
18          0.90309   0.30103   0.30103   0.60206   0.30103 -12.00000 -12.00000
19          1.20410   3.91340   0.60206 -12.00000   1.20410 -12.00000   0.00000
20          2.10720   0.30103   0.60206   1.20410   1.45400 -12.00000 -12.00000
21        -11.00000  -0.90309  -0.60206 -12.00000 -11.00000 -12.00000  -0.30103
22         -7.69860  -8.58460  -2.64290  -4.10670  -3.99200 -10.00000  -2.88990
23         -5.41850  -2.70930  -0.72700  -0.96108  -0.60206 -12.00000  -0.90309
24         -2.31700  -1.20290  -3.31600  -5.19920  -2.19860  -2.10180  -1.23040
25        -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -11.00000   0.12494
26        -12.00000 -12.00000 -12.00000 -12.00000 -11.00000 -12.00000  -0.30103
27         -0.30103  -1.50510  -3.91340 -12.00000 -12.00000  -1.80620  -0.30103
28        -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
29        -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
30        -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
31        -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
32        -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
33          0.30103   0.30103 -12.00000 -12.00000   0.90309 -12.00000 -12.00000
34         -0.30103  11.24830 -11.00000 -11.00000  -0.55279  -0.30103  11.15640
35          1.02750 -12.00000  14.16530   0.38100  13.83340   0.25298  14.38450
36         12.02160  -1.22910  12.98720  11.61020  -1.07320  12.24930  11.91970
37         12.59900  -1.15880  12.56820  13.18720  -0.65787  12.88580  12.06230
38         12.60280  13.32220  12.29860  13.20340  14.61010  14.44410  13.40460
39         13.38400  13.80230  11.79740  13.07550   0.90309  13.36700   0.61363
40        -11.00000 -11.00000 -12.00000 -12.00000 -12.00000 -11.00000 -12.00000
41        -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
42         12.68350 -11.00000 -12.00000 -12.00000 -11.00000 -12.00000   0.56159
43          0.22316   1.24930  -1.78060  12.58350  13.15270  12.39460  12.31670
44        -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
45         11.63350  -0.51742 -12.00000 -11.00000  11.79860   0.30103 -11.00000
46         10.00000   0.30103   6.96640   1.80620   0.30103   6.96640   0.21269
47         -1.80620  -0.90309  -1.50510  -0.72700  -0.30103  -0.60206  -0.30103
48         -6.32160  -8.42880 -10.00000  -5.11750  -3.01030  -3.91340  -8.42880
49         -0.79047  -9.43810  -7.82680 -11.00000  11.63200  11.37160  11.17850
50         -2.70930  -8.12780  -7.52570  -0.12494  -0.30103  -2.10720  -4.13980
51         10.00000   0.51956   5.36830   5.96450  13.43150  10.00000  10.00000
52        -10.00000  -8.72990 -10.00000  -5.71960  -0.90309 -10.00000 -10.00000
53        -10.00000  -8.72990  -8.72990  -8.72990  -0.90309  -9.12690 -10.00000
54         10.00000  10.00000   2.49840  10.00000  10.00000   0.90309  10.00000
55         10.00000  10.00000   9.03090   3.61240   8.40250 -12.00000   9.63300
56        -10.00000  -0.90309  -1.50510 -10.00000  -0.90309 -10.00000  -3.31130
57         -7.52570 -10.00000 -10.00000 -10.00000  -8.17140  -9.36380  -2.10720
58        -11.00000   2.70930 -12.00000 -12.00000 -12.00000 -11.00000 -11.00000
59        -11.00000 -11.00000  11.30500 -12.00000 -11.00000 -12.00000 -11.00000
60          0.67372 -12.00000 -12.00000 -12.00000 -12.00000   0.60206 -12.00000
61         12.11130  -0.47315  12.58830   0.52146  -0.30103  13.11500  12.43890
62         -2.10720 -12.00000 -12.00000  -1.20410  -7.18430 -12.00000 -12.00000
63          0.69522   1.05030  15.58810   0.43422  -0.27171   0.30103  14.44930
64        -11.00000  11.15790  11.42450  -0.41774 -11.00000  11.30360 -11.00000
65         12.96870  -0.89952  11.84960 -11.00000  12.80690  11.76120 -11.00000
66        -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
67        -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
68        -10.00000 -10.00000  -1.45400 -10.00000 -10.00000 -10.00000 -10.00000
69        -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
70          1.20410 -12.00000 -12.00000 -12.00000   0.30103 -12.00000 -11.00000
71          3.18300 -12.00000   0.96108   0.96108   0.90309   0.90309 -12.00000
72        -11.00000 -12.00000 -12.00000  -0.60206 -12.00000  -0.30103  -0.30103
73          0.43976   0.30103   3.28290  13.99300 -11.00000  12.57570 -11.00000
74        -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
75        -10.00000 -10.00000  -2.93000 -11.00000  -0.30103  -0.16273  15.50400
76         10.00000  10.00000   5.71960   3.01030   4.81650   0.30103   3.01030
77        -10.00000 -12.00000  -2.10720  -0.87477  -0.60206  -0.60206  -0.30103
78        -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
79        -11.00000  -0.30103 -11.00000 -11.00000 -11.00000 -11.00000  12.61380
80        -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
81          0.38100 -11.00000 -11.00000 -11.00000   0.30103  11.59030 -12.00000
82        -11.00000  12.85600   1.31410 -11.00000  12.25550  13.49180  11.17990
83        -12.00000 -12.00000  -0.90309  11.06700 -11.00000  13.62010  14.56270
84         13.40230  -0.28180  13.67830  12.21010  13.42290  13.51440  -0.63979
85        -11.00000  13.55520 -12.00000  12.19240  12.40390  11.91700 -11.00000
86        -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
87        -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
88         -0.30103 -12.00000 -12.00000  -0.30103 -12.00000 -12.00000 -12.00000
89        -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
90        -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
91        -12.00000 -12.00000 -12.00000  12.13400 -12.00000  -0.67947   0.48972
92        -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
93         11.96180   0.26777  11.83740  11.88320  11.02330  -0.38194  -0.63884
94        -12.00000 -12.00000 -11.00000 -12.00000 -11.00000 -12.00000 -11.00000
95         14.47230  15.44920  -0.30103  14.64900  15.10610  -0.59378   0.93523
96         11.46950  -0.27959  -0.30103  -0.30103  12.97100  -0.71927  -0.62420
97         11.79630  13.26890   0.73131  12.33630  13.64230  -0.53099  12.74460
98         11.32320 -12.00000 -12.00000  -0.30103  12.68640  13.28390  12.69730
99        -12.00000   0.30103 -12.00000 -12.00000 -12.00000  15.83760 -12.00000
100       -12.00000   1.17460 -12.00000   1.58230   0.30103   5.16000  15.01230
101       -11.00000  12.72520 -11.00000  -0.30103 -11.00000 -11.00000   5.44100
102       -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
103       -11.00000  12.03250  -0.30103 -11.00000  13.16860  -0.16273 -11.00000
104         0.55521  -0.37805  16.00000  13.64820  14.82440  13.45390  -1.48000
105        12.51720  13.79530  12.40720  13.91730  12.85040  12.17220  12.79340
106        12.51790  13.08260  11.79560  12.37050  11.48630  11.17230  13.30430
107        11.10600  12.67670  12.71380  11.64770  -0.30103  11.99060  -0.30103
108       -12.00000 -12.00000 -11.00000 -11.00000  -0.60206 -11.00000 -11.00000
109        11.56110  11.88220  11.58120  -0.37416   0.20548  15.51830  11.46140
110       -11.00000  11.51560  11.25710 -11.00000 -11.00000  -0.43870  -0.69354
111       -11.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
112        -0.80658  14.26630   0.57295  13.59090  -0.57863  14.01400  13.47790
113         0.30103 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
114       -12.00000  -0.30103 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
115        -0.60489  -0.47711  -0.53412  12.03090  11.23610  12.27570 -11.00000
116       -11.00000  -1.04680 -11.00000 -11.00000 -11.00000   0.64481   0.50515
117        -0.72700  -0.90309  -2.10720  -0.90309  -1.45400  -0.30103 -12.00000
118       -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
119        12.77680  11.71530   0.60583 -11.00000 -11.00000  14.32270 -11.00000
120       -12.00000 -11.00000 -12.00000 -11.00000 -12.00000 -12.00000 -12.00000
121       -12.00000  -0.30103 -12.00000  -0.30103 -12.00000 -12.00000 -12.00000
122        10.00000   7.45980  10.00000  10.00000   4.35670   9.93280  10.00000
123       -12.00000 -12.00000 -12.00000 -10.00000 -12.00000 -12.00000 -12.00000
124       -11.00000  -0.30103  -0.46376  -0.30103  13.66420  -0.30103   0.60206
125       -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000 -12.00000
    Whole.Bone.Marrow    Spleen    Testes
1           -12.00000  11.22570 -12.00000
2           -12.00000 -12.00000 -12.00000
3           -11.00000 -11.00000 -11.00000
4            -0.50515  -0.77949   0.30103
5           -12.00000 -12.00000 -11.00000
6           -12.00000 -12.00000 -11.00000
7           -12.00000 -12.00000 -12.00000
8           -12.00000 -12.00000 -12.00000
9           -12.00000   0.30103  11.51380
10           11.47270  12.35300  11.95070
11          -12.00000 -12.00000 -12.00000
12          -12.00000 -12.00000 -11.00000
13            0.30103  11.25640  11.24270
14          -12.00000 -12.00000 -12.00000
15          -12.00000 -11.00000  11.34390
16          -12.00000 -12.00000 -12.00000
17          -12.00000  -2.40820 -12.00000
18          -12.00000 -12.00000 -12.00000
19          -12.00000 -12.00000 -11.00000
20          -12.00000 -12.00000  12.22140
21          -12.00000 -12.00000  -0.75852
22          -12.00000  -0.42371  -1.94580
23          -12.00000 -12.00000  -0.43976
24          -11.00000  -8.73330  12.64770
25          -12.00000   0.30103 -12.00000
26          -12.00000 -12.00000  14.22990
27          -12.00000 -12.00000 -11.00000
28          -12.00000 -12.00000 -12.00000
29          -12.00000 -12.00000  11.12090
30          -12.00000 -12.00000 -12.00000
31          -12.00000 -12.00000 -11.00000
32          -12.00000 -12.00000 -12.00000
33          -12.00000 -12.00000 -12.00000
34          -12.00000  -0.78022 -11.00000
35          -12.00000 -12.00000   0.24414
36           12.05120   0.33907  12.77950
37            0.25722  12.08010  13.02330
38           -0.37802  -0.30103  14.24130
39          -11.00000  12.52800  12.68010
40          -12.00000 -12.00000 -12.00000
41          -12.00000 -12.00000 -12.00000
42          -12.00000 -12.00000   0.18293
43          -12.00000  -0.20548  13.76230
44          -12.00000 -12.00000 -12.00000
45          -12.00000 -11.00000 -12.00000
46          -12.00000   0.60206  12.05660
47          -12.00000  -0.30103 -10.00000
48          -12.00000  -4.21440  -5.68660
49            0.30103  11.23750  -0.50515
50          -12.00000   0.00000  -0.69152
51           12.31320  12.54590  12.78870
52          -12.00000  -0.90309  11.91460
53          -12.00000  -1.20410  -3.26420
54          -12.00000   1.48530  10.00000
55          -12.00000 -12.00000   0.46289
56          -12.00000  -1.20410 -11.00000
57            1.20410  -0.60206 -10.00000
58           11.11250  12.83400 -12.00000
59          -12.00000 -12.00000  12.39790
60          -12.00000 -12.00000 -11.00000
61           -0.45481  11.41870  13.31440
62          -12.00000 -11.00000  -0.30103
63           -0.51305   1.17020  13.39610
64            0.51767  11.13610   0.41129
65          -11.00000   0.40265 -11.00000
66          -12.00000 -12.00000  13.05140
67          -12.00000 -12.00000  11.04650
68            3.91340 -10.00000 -11.00000
69          -12.00000 -11.00000 -12.00000
70          -11.00000 -11.00000 -12.00000
71          -12.00000   0.30103  -0.20548
72          -12.00000  -0.60206  -0.30103
73          -12.00000 -11.00000 -11.00000
74          -12.00000 -12.00000 -11.00000
75          -12.00000 -12.00000 -11.00000
76          -12.00000 -12.00000 -11.00000
77          -12.00000  -3.91340  -0.37416
78          -12.00000 -12.00000 -12.00000
79          -12.00000 -12.00000 -12.00000
80          -12.00000 -12.00000 -12.00000
81          -12.00000 -11.00000 -12.00000
82           -0.76479  11.47530  12.59780
83          -12.00000 -12.00000 -11.00000
84           -4.51540  13.38720  11.39820
85           -4.27550  11.59180 -11.00000
86           10.00000 -11.00000   0.59533
87          -12.00000 -12.00000  -0.30103
88          -12.00000 -12.00000   0.30103
89          -12.00000 -12.00000  11.66190
90          -12.00000 -12.00000  11.19220
91          -12.00000 -12.00000 -12.00000
92          -12.00000 -12.00000 -12.00000
93          -11.00000  -0.39012  -0.27915
94          -12.00000   0.43976  12.54630
95           13.53910  14.98910  -0.28711
96           -0.44364  11.98030  -0.36987
97           13.61890  13.20330  -0.66397
98          -12.00000  -0.96108   0.68305
99          -12.00000 -12.00000 -12.00000
100         -12.00000   0.30103   0.30103
101         -11.00000  11.15530 -11.00000
102         -12.00000 -12.00000 -12.00000
103          -1.50510 -11.00000  13.28190
104           0.30103  12.64660  13.31470
105          12.42770  12.33870  12.73050
106         -11.00000 -12.00000  11.27790
107          -0.38487   0.21843 -11.00000
108         -12.00000 -12.00000 -11.00000
109          -0.51767   0.30103  14.48150
110         -12.00000 -11.00000   0.44223
111         -12.00000 -12.00000 -11.00000
112          -0.30103  13.67430   0.46498
113         -12.00000 -12.00000  -0.30103
114         -12.00000 -12.00000   0.30103
115         -12.00000   0.30103  -0.74427
116          -0.30103 -11.00000  -0.16273
117         -12.00000 -12.00000 -12.00000
118         -12.00000 -12.00000 -12.00000
119         -11.00000  11.72870   0.66243
120          -0.30103 -11.00000 -11.00000
121         -12.00000 -12.00000  11.24010
122          -2.10720   1.80620   3.26260
123         -12.00000 -12.00000 -12.00000
124          13.50890   0.48869 -12.00000
125         -12.00000 -12.00000 -11.00000

Note also that in the html, the full data frame is printed, which means tons of scrolling, whereas only a preview of the tibble is printed, which is usually more convenient. The tibble type also doesn’t automatically convert character columns to factors. In old versions of R (pre 4.0.0), data.frame automatically did this to the consternation of many.

Lab

Now that you have all the essential elements of slicing, let’s do some more things with COVID-19 data, but this time with world wide data from “Our World in Data”: https://docs.owid.io/projects/etl/api/covid/. This is a big data set, so it might take a few moments to download.

Note. The cases and deaths are only reported every week in these data so new_cases, new_deaths, etc are the total for the week (I assume the date is the end of the week though the website wasn’t clear 🤷).

library(tidyverse)

owid = read_csv("https://catalog.ourworldindata.org/garden/covid/latest/compact/compact.csv")

Before starting on the problems, take a look at which columns are provided in the table. This will help for solving the problems.

Problems

  1. Plot the new cases per week per million people for the pandemic for the United States. Use a line plot.
    (hint: use the help for plot, ?base::plot, to figure out how to set the plot type.)
    (hint: try to make plot not too jagged by removing rows where new_cases == 0)

  2. What week had the highest number of new deaths in the United States?
    (hint: use the order (remember to sort descending) or which.max functions.)

  3. What date and in what country was the worst (i.e., highest) for per capita death due to COVID-19?

  4. What date and in what country was the worst (i.e., highest) for positivity rate COVID-19?

  5. Create a new data frame using the data from owid called new_cases_per_100k consisting of the following columns, location, date, and cases, where cases is the number of new cases per 100,000 people. In two separate plots, plot the number of new cases per 100k people over time for the United Kingdom (plot 1) and Canada (plot 2). If you wanted to present these plots side by side so as to compare the severity of the pandemic in the UK vs Canada, what might you have to do to make them more comparable?

  6. In 2021, on how many days did the United States have fewer than 0.7 deaths per million people due to COVID-19? What is answer the United Kingdom? Use the column new_deaths_smoothed_per_million to answer this question.

  • Challenge problem (+3 extra credit)

    Plot a heatmap of the imprinting data using the heatmap function. The rows and columns of the heatmap should be labeled properly with the gene names (rows) and tissue names (columns). The Babak et al. (2015) paper has a similar heatmap in Fig 1. Hint: read carefully the help for the heatmap function and know that you can convert data frames to matrices with as.matrix.